GPIO工作原理
# 概况
在STM32F103x
数据手册上是这么介绍GPIO
接口的:
51/80/112个多功能双向的I/O口,所有I/O口可以映像到16个外部中断;几乎所有端口均可容忍5V信号
主要是它的三个特性:
- 双向多功能
- 所有接口都可以映射外部中断
- 几乎所有接口可以容忍5V信号
除了这些,我们的STM32
的GPIO还有8种输入/输出模式(后面会提到)。需要提醒的一点是:VDD
与VCC
通常表示正极,VSS
与GND
表示负极
# 8种输入输出模式[1]
# GPIO基本结构
每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍:
这边的电路图稍微提一下:
- 保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作
- P-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到
- TTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号
这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V
# STM32的GPIO工作方式
GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。
每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。
- GPIO_Mode_AIN 模拟输入
- GPIO_Mode_IN_FLOATING 浮空输入
- GPIO_Mode_IPD 下拉输入
- GPIO_Mode_IPU 上拉输入
- GPIO_Mode_Out_OD 开漏输出
- GPIO_Mode_Out_PP 推挽输出
- GPIO_Mode_AF_OD 复用开漏输出
- GPIO_Mode_AF_PP 复用推挽输出
下面将具体介绍GPIO的这八种工作方式:
# 浮空输入模式
浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的
将内部结构简化后,得到这样的过程:
也就是上、下拉电阻均未接通,输入信号完全由外部决定
# 上拉输入模式
上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平
简化的结构如下:
为什么在无信号的时候输入端会有一个高电平呢,就是因为这个上拉电阻接通到的是高电平,所以上拉输入常用来测量低电平
# 下拉输入模式
下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平
简化的结构如下:
为什么在无信号的时候输入端会有一个低电平呢,就是因为这个下拉电阻接通到的是低电平,所以下拉输入常用来测量高电平
# 模拟输入模式
模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等
# 开漏输出模式
开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平
通俗的讲,开漏输出就是使用各种方法,输出的时候,只有0与1的数字信号(电平高低)而没有电流通过
而最后一句讲到:I/O端口的电平不一定是输出的电平,为什么呢,看下图:
可以看到:接管输入与输出的信号放大器是并联的,也就是讲,外部输入的电平接的到的话,其电平也可能是接收到的电平
# 开漏复用输出模式
开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的
# 推挽输出模式
推挽输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经P-MOS管和N-MOS管,最终输出到I/O端口。这里要**注意P-MOS管和N-MOS管,当设置输出的值为高电平的时候,P-MOS管处于开启状态,N-MOS管处于关闭状态,此时I/O端口的电平就由P-MOS管决定:高电平;当设置输出的值为低电平的时候,P-MOS管处于关闭状态,N-MOS管处于开启状态,此时I/O端口的电平就由N-MOS管决定:低电平。**同时,I/O端口的电平也可以通过输入电路进行读取;注意,此时I/O端口的电平一定是输出的电平
通俗的讲,推挽输出就是使用各种方法,输出的时候,不仅有电平的高低,在高电平时会有强电流通过,以此可以驱动一些元件(但是相对来讲,这个电流还是比较小的)
# 推挽复用输出模式
推挽复用输出模式,与推挽输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的
# 总结与分析
什么是推挽结构和推挽电路?
推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度
开漏输出和推挽输出的区别
- 开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内);
- 推挽输出:可以输出强高、低电平,连接数字器件
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉
在STM32中选用怎样选择I/O模式
- 浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
- 带上拉输入_IPU——IO内部上拉电阻输入
- 带下拉输入_IPD—— IO内部下拉电阻输入
- 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电
- 开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
- 推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
- 复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL、SDA)
- 复用功能的开漏输出_AF_OD——片内外设功能(TX1、MOSI、MISO.SCK.SS)
最常用的模式为推挽输出与上拉输入
关于8种模式,还可参考以下文章:
GPIO 8种模式
# 寄存器相关
对于外设的配置,是由寄存器完成的,GPIO也不例外。
对于寄存器的配置在如何影响着GPIO请参考如下文章,在寄存器开发时在仔细研究:
寄存器相关
# 参考
[1] 8种输入输出模式:此部分转载自https://blog.csdn.net/qq_38410730/article/details/79858906 (opens new window),版权归原作者所有